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1. The Primal and Dual

A linear program is an optimization problem with a linear objective and linear constraints.

Here I will only consider problems with finitely many choice variables and constraints. As we

shall see, every linear program has another intimately related one—they come in pairs.

Fix (A, b, c) such that A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The primal is the linear program

V = sup
x≥0

{cx : Ax ≤ b},

and the dual is the linear program

W = inf
y≥0

{yb : yA ≥ c}.

A linear program is in “standard form” if it looks like a primal or a dual for some (A, b, c).

It is easy to see that every linear program is expressible in standard form. A linear program

is called infeasible if its constraint set is empty. By convention, V = −∞ if the primal is

infeasible and W = +∞ if the dual is infeasible. A linear program is feasible if its constraint

set is nonempty. In this case, any feasible vector is called a feasible solution.1

Theorem 1 (Weak Duality). V ≤ W for any triple (A, b, c).

Proof. If the primal is infeasible then V = −∞, so necessarily V ≤ W regardless of W , and

if the dual is infeasible then W = +∞; again V ≤ W . Now assume that neither the primal

nor the dual is infeasible. That is, there exist vectors x ∈ Rn and y ∈ Rm such that x, y ≥ 0,

Ax ≤ b and yA ≥ c. This implies that (b−Ax) ≥ 0. Multiplying by y ≥ 0 gives y(b−Ax) ≥ 0,

or yb ≥ yAx. Similarly, multiplying (yA− c) ≥ 0 by x ≥ 0 gives (yA− c)x ≥ 0, or yAx ≥ cx.

Collecting these inequalities gives

cx ≤ yAx ≤ yb

for every feasible pair (x, y). Therefore, the primal and dual are both bounded :

−∞ < cx ≤ yb < +∞ ⇒ V ≤ yb < +∞ and −∞ < cx ≤ W

by taking the supremum of the LHS of cx ≤ yb with respect to feasible x given yb and the

infimum of the RHS of cx ≤ yb with respect to feasible y given x. Taking the infimum of

the RHS of V ≤ yb with respect to feasible y or the supremum of the LHS of cx ≤ W with

respect to feasible x finally gives V ≤ W , and the theorem is proved. □
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1A feasible solution does not necessarily solve the linear program. For instance, x = 1 is a feasible solution of
the linear program maxx{x : x ≤ 2}, but it is obviously solved by x = 2.
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The proof of Theorem 1 above suggests a classification of linear programs into three kinds:

infeasible (I), (feasible and) bounded (B), (feasible and) unbounded (U). We will show that

the only possibilities for a primal and its dual are those described in Table 1 below.

Dual
I B U

I ✓ ✓
Primal B ✓

U ✓

Table 1. Joint classification of a primal and its dual

Proposition 2. If the primal is infeasible then the dual is either infeasible or unbounded.

Proof. If the primal is infeasible then there does not exist a vector x ≥ 0 such that Ax ≤ b.

By Farkas’ Lemma, there exists a vector y ≥ 0 such that yA ≥ 0 and yb < 0. If the dual

is infeasible, the proposition is proved, so suppose that the dual is feasible. For any feasible

dual solution z and any λ ≥ 0, the vector z + λy is also feasible, since z + λy ≥ 0 and

(z + λy)A = zA+ λyA ≥ c+ λyA ≥ c. Moreover, (z + λy)b = zb+ λyb is unbounded: since

yb < 0, for any bound K ∈ R there exists λ large enough that zb+ λyb < K. □

The contrapositive of Proposition 2 is this: if the dual is bounded then its primal is feasible.

Therefore, both primal and dual are feasible, so by the proof of Theorem 1 they are bounded,

too. Since the dual of the dual is the primal, as long as either the primal or the dual is

bounded, both are. Moreover, their values coincide, as the next result shows.

Theorem 3 (Strong Duality). Unless both the primal and the dual are infeasible, V = W .

Moreover, both the primal and the dual have optimal solutions whenever either is bounded.

Proof. If the primal is feasible but unbounded then V = +∞. If its dual were feasible then

there would exist y ≥ 0 such that yA ≥ c. But this would contradict Theorem 1, since it

would imply that W ≤ yb < +∞ = V . Therefore, the dual is infeasible, and V = W .

If the primal is bounded then, by the argument immediately following the proof of Proposition

2, the dual is bounded, too. Therefore, both primal and dual are feasible. By Farkas’ Lemma,

primal feasibility implies that there is no vector u ≥ 0 such that uA ≥ 0 and ub < 0, whereas

dual feasibility implies that there is no vector v ≥ 0 such that Av ≤ 0 and cv > 0. Call these

the primal and dual feasibility conditions.

Given that both primal and dual are feasible, we must show that their values coincide, that

is, there exist vectors x, y ≥ 0 such that Ax ≤ b, yA ≥ c and yb ≤ cx. (By Theorem 1, the

inequality cx ≤ yb already holds.) Let us now collect these inequalities into a single system.

Define z = (x, y′) ∈ Rn+m, d = (b,−c′, 0) ∈ Rm+n+1 and B ∈ R(m+n+1)×(n+m) by

B =

 A 0

0 −A′

−c b′

 .



LINEAR PROGRAMMING DUALITY AND THE MINIMAX THEOREM 3

By construction, there exists a vector z ≥ 0 such that Bz ≤ d if and only if the primal

and dual values coincide at x and y, respectively. By Farkas’ Lemma, either this system

of inequalities holds or there is a vector w ≥ 0 such that wB ≥ 0 and wd < 0. Writing

w = (u, v′, λ) ∈ Rm+n+1, where λ ∈ R, the inequalities wB ≥ 0 and wd < 0 disaggregate into

uA− λc ≥ 0, −v′A′ + λb′ ≥ 0, and ub− v′c′ < 0, or equivalently

uA ≥ λc, Av ≤ λb, ub < cv.

We will now show that there does not exist a vector w ≥ 0 that satisfies these inequalities.

To see why, suppose that w = (u, v′, λ) satisfies the system. If λ > 0 then, dividing by λ and

substituting û = u/λ ≥ 0, v̂ = v/λ ≥ 0 into the system of inequalities above gives

ûA ≥ c, Av̂ ≥ b, ûb < cv̂.

This contradicts Theorem 1, as it states that there is a primal feasible solution û and a dual

feasible solution v̂ such that weak duality fails. Therefore, λ > 0 leads to a contradiction. If

instead λ = 0, the inequalities above become

uA ≥ 0, Av ≥ 0, ub < cv.

But this contradicts the primal and dual feasibility conditions of the previous page, since they

stipulate that ub ≥ 0 ≥ cv. Therefore, the alternative to these inequalities must hold, in other

words, there exist primal and dual feasible solutions whose values coincide. By weak duality,

these variables are optimal for the respective linear programs in which they are feasible. □

Theorem 3 and its proof facilitate the analysis of linear programs substantially. To find an

optimal solution, it is enough to find feasible primal and dual solutions with the same value.

Moreover, to guarantee strong duality, that is, V = W , it is enough to establish that either the

primal or the dual is feasible. Example 4 below illustrates the only case in which the value of

the primal can differ from the value of the dual, namely when they are both infeasible.

Example 4. Consider the following linear programs:

V = sup
x∈R2

{x1−x2 : x1+x2 = 1, x1+x2 = −1}, W = inf
y∈R2

{y1−y2 : y1+y2 = 1, y1+y2 = −1}.

It is easy to see that the dual of the linear program on the left above is the linear program

on the right.2 Clearly, the primal and dual feasible sets coincide. However, both sets are

obviously empty, therefore −∞ = V < W = +∞.

Theorem 5 (Complementary Slackness). The feasible (x∗, y∗) satisfies

(y∗A− c)x∗ = 0 and y∗(Ax∗ − b) = 0

if and only if (x∗, y∗) is optimal for the primal and the dual, respectively.

2Yes, these linear programs are not in standard form. The purported primal can be turned into an equivalent
linear program in standard form, and its dual is easily seen to be equivalent to the purported dual above.
Alternatively, at the end of Section 2 it will be seen how to take the dual of a nonstandard linear program.
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Proof. If the condition above holds then cx∗ = y∗Ax∗ = y∗b, that is, x∗, y∗ are feasible

primal and dual solutions with the same value, so by Theorem 3 they are optimal solutions.

Conversely, given two optimal solutions, again by Theorem 3, they must have the same value,

so cx∗ = y∗b. Therefore, (y∗A − c)x∗ = y∗(Ax∗ − b). By feasibility, Ax∗ − b ≤ 0 and

y∗A− c ≥ 0, so, since x∗, y∗ ≥ 0, it follows that (y∗A− c)x∗ ≥ 0 ≥ y∗(Ax∗− b), which implies

y∗Ax∗ − cx∗ = 0 = y∗Ax∗ − y∗b. □

The equations of Theorem 5, called complementary slackness, are often described as follows.

By feasibility, x∗ ≥ 0 and y∗A−c ≥ 0, so (y∗A−c)x∗ =
∑

j((y
∗A)j−cj)x

∗
j = 0 requires

((y∗A)j − cj)x
∗
j = 0 for j = 1, . . . , n.

In other words, if x∗
j > 0 then (y∗A)j = cj, and if (y∗A)j > cj then x∗

j = 0. A corresponding

conclusion applies to the dual equation, of course.

2. Constrained Optimization as a Game

The primal V = max{cx : Ax ≤ b, x ≥ 0} involves maximizing a linear objective subject to

linear constraints. For simplicity, assume that the constraint set is nonempty and the value V

is bounded. The Lagrangian approach to this optimization problem is to construct a vector

of Lagrange multipliers, call them y ∈ Rm, so there is one multiplier per constraint, and play

the following game of opposing interests. First, player 1, say, chooses a vector x ∈ Rn such

that x ≥ 0. Next, after observing player 1’s move, player 2 chooses a vector y ∈ Rm such that

y ≥ 0. Player 2 then pays player 1 the amount stipulated in the Lagrangian below:

L(x, y) = cx+ y(b− Ax).

If player 1 chooses x and player 2 chooses y then player 2 pays player 1 L(x, y). If player

1 chose x ≥ 0 that violates the constraint Ax ≤ b, say because the ith constraint satisfies

(Ax)i > bi, then player 2 can choose yi > 0 increasingly large until yi[bi − (Ax)i] < K for any

lower bound K ∈ R. This way, player 2 can earn +∞ from player 1. Therefore, player 1 will

never choose x that violates the constraint Ax ≤ b. In other words,

V = max
x≥0

min
y≥0

L(x, y).

Similarly, starting with the dual

W = min
y≥0

{yb : yA ≥ c}

and denoting by x ∈ Rn the Lagrange multipliers of the dual constraints, it follows that

W = min
y≥0

max
x≥0

L(x, y).

Corollary 6 (Minimax Theorem). It doesn’t matter who goes first in the game above:

max
x≥0

min
y≥0

L(x, y) = min
y≥0

max
x≥0

L(x, y).
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In general, a given linear program with some equality constraints would have multipliers that

need not be nonnegative. To see this, if there was a constraint of the form (Ax)i = bi then

its multiplier yi should have to be allowed to be positive or negative in order for the game

to impose the constraint on the player choosing x. More generally, let x = (x1, x2) be choice

variables such that x1 = (x1
1, . . . , x

1
n1
) and x2 = (x2

1, . . . , x
2
n2
), and c = (c1, c2) be an objective

with c1 = (c11, . . . , c
1
n1
) and c2 = (c21, . . . , c

2
n2
). Let b = (b1, b2) such that b1 = (b11, . . . , b

1
m1

)

and b2 = (b21, . . . , b
2
m2

) be right-hand side constraints, and A11 ∈ Rm1×n1 , A12 ∈ Rm1×n2 ,

A21 ∈ Rm2×n1 , and A22 ∈ Rm2×n2 be constraint matrices. Consider the linear program

V = sup
x∈Rn

{cx : [A11 A12]x = b1, [A21 A22]x ≤ b2, x2 ≥ 0},

where n = n1 +n2 and [A11 A12] is the horizontal concatenation of A11 and A12 (similarly for

[A21 A22]). This program has unrestricted choice variables and non-negative ones, equality

constraints and inequality constraints. Call it the nonstandard primal. Its Lagrangian is

L(x, y) = cx+ y1(b1 − [A11 A12]x) + y2(b2 − [A21 A22]x),

where the vector of multipliers y = (y1, y2) satisfies y1 = (y11, . . . , y
1
m1

) and y2 = (y21, . . . , y
2
m2

)

with y1 unrestricted and y2 ≥ 0. Rearranging and multiplying by −1 gives

M(x, y) = −L(x, y) = −y1b1 − y2b2 + y1A11x1 + y1A12x2 + y2A21x1 + y2A22x2 − cx

= −yb+ (c1 − y(A11, A21))x1 + (c2 − y(A12, A22))x2,

where (A11, A21) ∈ Rm×n1 concatenates A11 and A21 vertically (m = m1 + m2); similarly,

(A12, A22) ∈ Rm×n2 . This Lagrangian corresponds to the minimization

W = inf
y∈Rm

{yb : y(A11, A21) = c1, y(A12, A22) ≥ c2, y2 ≥ 0}.

Call this the nonstandard dual of the nonstandard primal. Obviously, the Minimax Theorem

above applies here, as do the previous duality results. This derivation easily yields the duality

of Example 4. Henceforth, we drop standard and nonstandard labels for linear programs,

although we will often resort to standard programs for simplicity.

3. Value Function

Given a primal, consider its value as a function of the right-hand side constraints:

V (b) = sup
x≥0

{cx : Ax ≤ b}.

The function V : Rm → R ∪ {±∞} describes the value of the primal as the vector b varies.

In this section, we will derive the main properties of this value function. Let dom V denote

the effective domain of V , defined as dom V = {b ∈ Rm : V (b) > −∞}. The effective domain

collects all the right-hand side constraints b of the primal that lead to a nonempty constraint

set, i.e., for which there exists x ≥ 0 such that Ax ≤ b.

Lemma 7. V (0) = 0 or +∞, and if V (0) = +∞ then V (b) = +∞ for all b ∈ dom V .



6 DAVID RAHMAN

Proof. Clearly, 0 ∈ dom V , since if b = 0 then x = 0 satisfies x ≥ 0 and Ax ≤ 0. Therefore,

V (0) ≥ c · 0 = 0. If V (0) > 0 then there exists x ≥ 0 such that Ax ≤ 0 and cx > 0. But

then λx is also feasible for all λ > 0, with value cλx = λ(cx), which can be made arbitrarily

large with λ, since cx > 0. Hence, V (0) = +∞. It remains to show that V (0) = +∞ implies

V (b) = +∞ for all b ∈ dom V . If V (0) = +∞, there is a sequence {xn} of feasible vectors,

i.e., such that xn ≥ 0 and Axn ≤ 0 with cxn → +∞ as n → ∞. For any vector b ∈ dom V ,

there exists a feasible vector x ≥ 0 such that Ax ≤ b. However, the vector x+xn ≥ 0 satisfies

A(x+xn) = Ax+Axn ≤ b, so is feasible, and c(x+xn) = cx+cxn → +∞, so V (b) = +∞. □

Lemma 8. V is positively homogeneous and superadditive, hence concave.

Proof. Positive homogeneity means V (λb) = λV (b) for every λ > 0. If V (b) is ±∞, this

is immediate. Next, suppose that V (b) ∈ R. By Theorem 3 there exists x∗ ≥ 0 such that

Ax∗ ≤ b and V (b) = cx∗. For any λ > 0, clearly V (λb) ≥ c(λx∗), since λx∗ ≥ 0 and

A(λx∗) ≤ λb. On the other hand, if V (λb) > cλx∗ then there is another vector x∗∗ ≥ 0 such

that Ax∗∗ ≤ λb and V (λb) = cx∗∗ > λcx∗. But this implies that z∗ = x∗∗/λ satisfies z∗ ≥ 0,

Az∗ ≤ b and cz∗ > cx∗, contradicting the optimality of x∗. Therefore, V (λb) = λV (b).

For superadditivity, we must show that V (b) + V (d) ≤ V (b + d) for all b, d ∈ Rm. If either

V (b) or V (d) are equal to −∞, we are done. Suppose that both V (b), V (d) > −∞, so there

exists x, z ≥ 0 such that Ax ≤ b and Az ≤ d. Now, letting w = x + z, clearly w ≥ 0

and Aw = Ax + Az ≤ b + d, therefore, since V is the maximum value among all feasible

solutions with right-hand side constraint b + d, it follows that cw ≤ V (b + d). To obtain

concavity, let b, d ∈ Rm and λ ∈ [0, 1]. By positive homogeneity and superaddivity, clearly

V (λb+ (1− λ)d) ≥ V (λb) + V ((1− λ)d) = λV (b) + (1− λ)V (d). □

The subdifferential of the concave function V at b is the closed convex set

∂V (b) = {y ∈ Rm : V (b)− yb ≥ V (b̂)− yb̂ ∀b̂ ∈ Rm}.

Some people reserve the term subdifferential for convex functions and would call the object

above a “superdifferential.” We follow Rockafellar and call it the subdifferential of a concave

function. At any point of differentiability, the subdifferential of V equals the derivative. If the

function V has a kink at some point, the subdifferential is the set of supporting hyperplanes

of the function at that point. Another way to think about it in this context is as follows.

Proposition 9. If b ∈ Rm is a point where V (b) is finite then

∂V (b) = argmin
y≥0

{yb : yA ≥ c}.

Proof. Since there is a point b ∈ Rm where V (b) is finite, there is strong duality there.

Therefore, the dual has a feasible solution, so there is strong duality for all b̂ ∈ Rm. If y

solves the dual problem then V (b) − yb = 0 by strong duality, but V (b̂) ≤ yb̂ for all b̂ ∈ Rm

by weak duality, so V (b)− yb ≥ V (b̂)− yb̂, therefore y ∈ ∂V (b).
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Conversely, suppose that y is not a dual solution. If yb > V (b) then V (b)−yb < 0 = V (0)−y0,

hence y ̸∈ ∂V (b). Now suppose that yb ≤ V (b). For y to not be a dual solution, it must be

infeasible. Suppose first that this is because yj < 0 for some j. Letting 1j equal 1 at the jth

place and 0 elsewhere, the subdifferential inequality

V (b)− yb ≥ V (b+ 1j)− y(b+ 1j)

implies 0 > yj ≥ V (b+1j)−V (b) ≥ 0, where the last inequality follows by revealed preference,

since b ≤ b + 1j. This contradiction implies that y ̸∈ ∂V (b). Next, suppose that y ≥ 0 but

yAi < ci for some i, where Ai is the ith column of A. The subdifferential inequality

V (b)− yb ≥ V (b+ Ai)− y(b+ Ai)

implies ci > yAi ≥ V (b + Ai) − V (b). Since V (b) is finite, the dual with objective b has an

optimal solution, call it y0. If V (b+Ai) is finite, there is an optimal dual solution for objective

b+Ai, call it y
i. By revealed preference, V (b) = y0b ≤ yib, hence ci > yi(b+Ai)− yib = yiAi,

since yi(b+Ai) = V (b+Ai). This contradicts feasibility of yi, therefore, y ̸∈ ∂V (b). Finally,

suppose that V (b+Ai) is not finite. Since the dual is feasible for all b̂ ∈ Rm, there is a sequence

{yi,n}n of feasible dual variables such that yi,n(b+Ai) → −∞ as n → ∞. In particular, there

exists N such that ci > yi,n(b+Ai)−V (b) for all n ≥ N . By revealed preference, V (b) ≤ yi,nb,

hence ci > yi,n(b+ Ai)− yi,nb = yi,nAi, contradicting feasibility of yi,n, thus y ̸∈ ∂V (b). □
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